更多>>精华博文推荐
更多>>人气最旺专家

关鑫娜

领域:维基百科

介绍:跟踪训练3 甲、乙两人进行围棋比赛,每局比赛甲胜的概率为乙胜的概率为没有和棋,采用五局三胜制,规定某人先胜三局则比赛结束,求比赛局数X的均值.解答解 由题意,X的所有可能值是3,4,5.所以X的概率分布如下表:例4 受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:类型四 均值的实际应用品牌甲乙首次出现故障时间x/年0x≤11x≤2x20x≤2x2轿车数量/辆2345545每辆利润/万元将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;解答(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的概率分布;解答解 依题意得X1的概率分布如下表:X2的概率分布如下表:(3)该厂预计今后这两种品牌轿车的销量相当,由于资金限制,因此只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?请说明理由.解答因为E(X1)E(X2),所以应生产甲品牌轿车.解答概率模型的三个步骤(1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些.(2)确定随机变量的概率分布,计算随机变量的均值.(3)对照实际意义,回答概率、均值等所表示的结论.反思与感悟跟踪训练4 某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;解答习题课离散型随机变量的均值第2章 概率学习目标1.进一步熟练掌握均值公式及性质.2.能利用随机变量的均值解决实际生活中的有关问题.题型探究知识梳理内容索引当堂训练知识梳理1.对均值的再认识(1)含义:均值是离散型随机变量的一个重要特征数,反映或刻画的是随机变量取值的平均水平.(2)来源:均值不是通过一次或多次试验就可以得到的,而是在大量的重复试验中表现出来的相对稳定的值.(3)单位:随机变量的均值与随机变量本身具有相同的单位.(4)与平均数的区别:均值是概率意义下的平均值,不同于相应数值的平均数.2.均值的性质X是随机变量,若随机变量η=aX+b(a,b∈R),则E(η)=E(aX+b)=aE(X)+b.题型探究例1 在10件产品中有2件次品,连续抽3次,每次抽1件,求:(1)不放回抽样时,抽取次品数ξ的均值;解答类型一 放回与不放回问题的均值∴随机变量ξ的概率分布如下表:∴随机变量ξ服从超几何分布,n=3,M=2,N=10,(2)放回抽样时,抽取次品数η的均值.解答不放回抽样服从超几何分布,放回抽样服从二项分布,求均值可利用公式代入计算.反思与感悟跟踪训练1 甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m个球,乙袋中共有2m个球,从甲袋中摸出1个球为红球的概率为从乙袋中摸出1个球为红球的概率为P2.(1)若m=10,求甲袋中红球的个数;解 设甲袋中红球的个数为x,解答(2)若将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是求P2的值;解答(3)设P2=若从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次.设ξ表示摸出红球的总次数,求ξ的概率分布和均值.解答解 ξ的所有可能值为0,1,2,3.所以ξ的概率分布为例2 如图所示,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).(1)求V=0的概率;类型二 与排列、组合有关的分布列的均值解答(2)求均值E(V).解答因此V的概率分布如下表:解此类题的关键是搞清离散型随机变量X取每个值时所对应的随机事件,然后利用排列、组合知识求出X取每个值时的概率,利用均值的公式便可得到.反思与感悟跟踪训练2 某地举办知识竞赛,组委会为每位选手都备有10道不同的题目,其中有6道艺术类题目,2道文学类题目...

李嵩

领域:商都网

介绍:B.唐代洛阳与长安的城市规划呈现出“间”的网格化特征,在周代的井田制中,国土由“井田”构成的网格划分为“间”。利来官方网站w66利来,利来官方网站w66利来,利来官方网站w66利来,利来官方网站w66利来,利来官方网站w66利来,利来官方网站w66利来

利来国际娱乐w66
本站新公告利来官方网站w66利来,利来官方网站w66利来,利来官方网站w66利来,利来官方网站w66利来,利来官方网站w66利来,利来官方网站w66利来
co3 | 2018-12-11 | 阅读(771) | 评论(279)
A.名称B.网址C.办公场所D.联系方式、主管部门2.《招标公告和公示信息发布管理办法》第八条规定,依法必须招标项目的AB应当在“中国招标投标公共服务平台”或者项目所在地省级电子招标投标公共服务平台发布。【阅读全文】
利来官方网站w66利来,利来官方网站w66利来,利来官方网站w66利来,利来官方网站w66利来,利来官方网站w66利来,利来官方网站w66利来
ifw | 2018-12-11 | 阅读(558) | 评论(327)
会计的源远大禹的故事会计”名称的由来。【阅读全文】
vrd | 2018-12-11 | 阅读(76) | 评论(290)
4.提前支取的定期存款计息。【阅读全文】
1md | 2018-12-11 | 阅读(73) | 评论(372)
跟踪训练3 甲、乙两人进行围棋比赛,每局比赛甲胜的概率为乙胜的概率为没有和棋,采用五局三胜制,规定某人先胜三局则比赛结束,求比赛局数X的均值.解答解 由题意,X的所有可能值是3,4,5.所以X的概率分布如下表:例4 受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:类型四 均值的实际应用品牌甲乙首次出现故障时间x/年0x≤11x≤2x20x≤2x2轿车数量/辆2345545每辆利润/万元将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;解答(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的概率分布;解答解 依题意得X1的概率分布如下表:X2的概率分布如下表:(3)该厂预计今后这两种品牌轿车的销量相当,由于资金限制,因此只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?请说明理由.解答因为E(X1)E(X2),所以应生产甲品牌轿车.解答概率模型的三个步骤(1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些.(2)确定随机变量的概率分布,计算随机变量的均值.(3)对照实际意义,回答概率、均值等所表示的结论.反思与感悟跟踪训练4 某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;解答习题课离散型随机变量的均值第2章 概率学习目标1.进一步熟练掌握均值公式及性质.2.能利用随机变量的均值解决实际生活中的有关问题.题型探究知识梳理内容索引当堂训练知识梳理1.对均值的再认识(1)含义:均值是离散型随机变量的一个重要特征数,反映或刻画的是随机变量取值的平均水平.(2)来源:均值不是通过一次或多次试验就可以得到的,而是在大量的重复试验中表现出来的相对稳定的值.(3)单位:随机变量的均值与随机变量本身具有相同的单位.(4)与平均数的区别:均值是概率意义下的平均值,不同于相应数值的平均数.2.均值的性质X是随机变量,若随机变量η=aX+b(a,b∈R),则E(η)=E(aX+b)=aE(X)+b.题型探究例1 在10件产品中有2件次品,连续抽3次,每次抽1件,求:(1)不放回抽样时,抽取次品数ξ的均值;解答类型一 放回与不放回问题的均值∴随机变量ξ的概率分布如下表:∴随机变量ξ服从超几何分布,n=3,M=2,N=10,(2)放回抽样时,抽取次品数η的均值.解答不放回抽样服从超几何分布,放回抽样服从二项分布,求均值可利用公式代入计算.反思与感悟跟踪训练1 甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m个球,乙袋中共有2m个球,从甲袋中摸出1个球为红球的概率为从乙袋中摸出1个球为红球的概率为P2.(1)若m=10,求甲袋中红球的个数;解 设甲袋中红球的个数为x,解答(2)若将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是求P2的值;解答(3)设P2=若从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次.设ξ表示摸出红球的总次数,求ξ的概率分布和均值.解答解 ξ的所有可能值为0,1,2,3.所以ξ的概率分布为例2 如图所示,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).(1)求V=0的概率;类型二 与排列、组合有关的分布列的均值解答(2)求均值E(V).解答因此V的概率分布如下表:解此类题的关键是搞清离散型随机变量X取每个值时所对应的随机事件,然后利用排列、组合知识求出X取每个值时的概率,利用均值的公式便可得到.反思与感悟跟踪训练2 某地举办知识竞赛,组委会为每位选手都备有10道不同的题目,其中有6道艺术类题目,2道文学类题目【阅读全文】
2ev | 2018-12-11 | 阅读(688) | 评论(960)
前外侧髌旁入路切开筋膜于髂胫束前方打开深筋膜。【阅读全文】
d2o | 2018-12-10 | 阅读(129) | 评论(63)
AgonistaloneAgonist+antagonistIncreasedagonist+antagonist竞争性拮抗药(Competitiveantagonist)定义:可逆性地与激动药竞争同一受体。【阅读全文】
yf0 | 2018-12-10 | 阅读(356) | 评论(804)
;5.编制项目实施预方案,报政府审批。【阅读全文】
awn | 2018-12-10 | 阅读(671) | 评论(523)
表现为由腰部至大腿及小腿后侧的放射性刺激或麻木感,直达足底部。【阅读全文】
利来官方网站w66利来,利来官方网站w66利来,利来官方网站w66利来,利来官方网站w66利来,利来官方网站w66利来,利来官方网站w66利来
gh1 | 2018-12-10 | 阅读(826) | 评论(852)
ChemicalLaboratory-Kao.,:KE/2018/12646Date:2018/2/5Page:,SHIHHUA1STRD.,LINYUANDISTRICT,KAOHSIUNGCITY832,TAIWAN()Thefollowingsample(s)was/weresubmittedandidentifiedby/onbehalfoftheapplicantas:SampleDescription:POLYPROPYLENEHOMOPOLYMERStyle/ItemNo.:1003,1005,1005N,1005T,1009,1020,1020L,1020T,1024,1024T,1030T,1040,1040F,1040U,1080,1100,1120,1120D,1124,1124H,1202F,1250D,1252F,1350D,1352F,1352S,1450D,1600A,1600D,1600N,1700D,1900D,1990,2020,2020H,2020S,2080,2100,2100M,2100T,6005P,:POLYPROPYLENEHOMOPOLYMERColor:CLEARSampleReceivingDate:2018/01/30TestingPeriod:2018/01/30TO2018/2/5SampleSubmittedBy:FORMOSAPLASTICSCORPORATION============================================================================================TestRequested:Asspecifiedbyclient,withreferencetoRoHS2011/65/EUAnnexIIandamendingDirective(EU)2015/863todetermineCadmium,Lead,Mercury,Cr(VI),PBBs,PBDEs,DBP,BBP,DEHP,DIBPcontentsinthesubmittedsample(s).TestMe【阅读全文】
jvc | 2018-12-09 | 阅读(606) | 评论(834)
操作的指导意见》(下称《指导意见》)旨在为血液净化血液净化临床工程技师应为透析室的设备建临床工程技师的日常工作内容和工作方法提供指导立档案,详细记录设备购买、使用、保养、故障、维修、性意见。【阅读全文】
bse | 2018-12-09 | 阅读(822) | 评论(984)
方形的院落是“间”观念延伸的第一步,由院落而组成网格式的建筑群则是“间”观念延伸的第二步,中国古典建筑群平面布局中往往隐藏着规划严整的网格基线。【阅读全文】
0pg | 2018-12-09 | 阅读(210) | 评论(134)
如美国的田园饭店度假村过去是一处夏季旅游度假区,在1959年增加了滑雪项目,转为四季营业。【阅读全文】
yuw | 2018-12-09 | 阅读(195) | 评论(315)
PAGEPAGE1单元质量检测三古风余韵(考试时间:150分钟 分值:150分)一、现代文阅读(35分)(一)论述类文本阅读(9分,每小题3分)阅读下面的文字,完成1~3题。【阅读全文】
11e | 2018-12-08 | 阅读(781) | 评论(554)
主要表现为满月脸、多血质外貌、向心性肥胖、痤疮、紫纹、高血压、继发性糖尿病和骨质疏松等治疗手术切除增生的脂肪组织脂肪抽吸术戒酒全面检查,对症支持容易复发女,78岁,一月前无明显诱因发现肉眼血尿,为全程性,无血块,自述伴小腹“热”感病例3CT疑难病例讨论男,44岁,无明显诱因发现颈部逐渐增粗三年,无疼痛,无呼吸困难,未触及肿块病例2如何描述?应重点观察哪些结构?如何诊断?脂肪瘤?Madelung综合征Madelung综合征,也称为良性对称性脂肪过多症,多发性对称性脂肪过多症,或Launois-Bensaude综合征特点:大量无包膜脂肪团呈对称性聚集在颈项部、上肢或躯干上部;进行性增大,质软,无压痛,表面皮肤色泽正常,部分患者颈部皮肤色素增多,变红,颈部皮肤粗糙病理:无包膜的脂肪组织流行病学特点1846年Brodie首次报道了一例颈项部大量脂肪聚集皮下的病例1888年Madelung首次对文献报道的33例病例做了总结和探讨常见于30-60岁的中年男性,男女比例3:1~5:1,文献报道最小的患者仅有九岁多有长期饮酒史或慢性酒精中毒史常合并诸多内科疾病,包括外周脱髓鞘病变,肝病,糖耐量下降,糖尿病,高尿酸血症,甲减,内分泌肿瘤等病因不明目前一般认为与长期慢性酒精中毒有关,脂肪异常堆积是由于儿茶酚胺作用下脂肪分解代谢存在缺陷所致;发病部位正好是棕色脂肪的主要分布区,所以认为此病是一种起源于棕色脂肪的类肿瘤样病变;棕色脂肪含有丰富的线粒体,长期滥用酒精灯可以使某些脂肪分解代谢有关的大分子基因发生突变,造成脂肪细胞分解代谢障碍,脂肪细胞瘤样增生病因患者照片皮下组织内见弥漫性、对称性明显增厚的脂肪组织脂肪组织无明显包膜,无边界,探头加压能变形脂肪组织以皮下为主,可以深入深筋膜,甚至深入颈动脉鞘内术前影像学检查以明确脂肪包块的分布,大血管的走形,气管受压的程度,上纵隔是否受累超声表现【阅读全文】
dz9 | 2018-12-08 | 阅读(948) | 评论(485)
 离散型随机变量的方差与标准差第2章 随机变量的均值和方差学习目标1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及两点分布、二项分布的方差的求法,会利用公式求它们的方差.题型探究问题导学内容索引当堂训练问题导学知识点一 方差、标准差的定义及方差的性质甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为X和Y,X和Y的概率分布如下:思考1 试求E(X),E(Y).答案思考2 能否由E(X)与E(Y)的值比较两名工人技术水平的高低?答案答案 不能,因为E(X)=E(Y).思考3 试想用什么指标衡量甲、乙两工人技术水平的高低?答案答案 方差.①方差:V(X)=σ2=,其中,pi≥0,i=1,2,…,n,p1+p2+…+pn=1.(1)离散型随机变量的方差和标准差设离散型随机变量X的均值为μ,其概率分布表如下:梳理Xx1x2…xi…xnPp1p2…pi…pn(x1-μ)2p1+(x2-μ)2p2+…+(xn-μ)2pn②标准差:σ=.③意义:方差刻画了随机变量X与其均值μ的程度.(2)方差的性质:V(aX+b)=.平均偏离a2V(X)知识点二 两点分布、超几何分布与二项分布的方差1.两点分布:若X~0-1分布,则V(X)=.2.超几何分布:若X~H(n,M,N),则V(X)=.3.二项分布:若X~B(n,p),则V(X)=.p(1-p)np(1-p)题型探究例1 在一个不透明的纸袋里装有5个大小相同的小球,其中有1个红球和4个黄球,规定每次从袋中任意摸出一球,若摸出的是黄球则不再放回,直到摸出红球为止,求摸球次数X的均值和方差.解答类型一 求随机变量的方差解 X的可能取值为1,2,3,4,5.∴X的概率分布为求离散型随机变量X的均值与方差的基本步骤(1)理解X的意义,写出X可能取的全部值.(2)求X取每个值的概率.(3)写出X的概率分布.(4)由均值的定义求E(X).(5)由方差的定义求V(X).反思与感悟跟踪训练1 甲,乙两人独立解某一道数学题,已知该题被甲独立解出的概率为,被甲或乙解出的概率为,(1)求该题被乙独立解出的概率;解 记甲、乙分别解出此题的事件记为A,B.设甲独立解出此题的概率为P1,乙为P2,则P(A)=P1=,P(B)=P2,=P1+P2-P1P2=,∴+P2-=,则=,即P2=解答(2)求解出该题的人数X的均值和方差.解答=×+×=∴X的概率分布为(X)=0×+1×+2×=+=,V(X)=(0-)2·+(1-)2·+(2-)2·=++=例2 某厂一批产品的合格率是98%.(1)计算从中抽取一件产品为正品的数量的方差;解 用ξ表示抽得的正品数,则ξ=0,1.ξ服从两点分布,且P(ξ=0)=,P(ξ=1)=,所以V(ξ)=p(1-p)=×(1-)=类型二 两点分布与二项分布的方差解答(2)从中有放回地随机抽取10件产品,计算抽出的10件产品中正品数的方差及标准差.解 用X表示抽得的正品数,则X~B(10,),所以V(X)=10××=,解答解此类问题,首先要确定正确的离散型随机变量,然后确定它是否服从特殊分布,若它服从两点分布,则其方差为p(1-p);若其服从二项分布,则其方差为np(1-p)(其中p为成功概率).反思与感悟跟踪训练2 (1)已知随机变量X服从二项分布B(n,p),若E(X)=30,V(X)=20,则p=____.答案解析答案解析10当堂训练1.已知随机变量X的概率分布为答案23451解析①③234512.同时抛掷两枚质地均匀的硬币10次,设两枚硬币同时出现反面的次数为ξ,则V(ξ)=___.答案23451解析【阅读全文】
共5页

友情链接,当前时间:2018-12-11

利来国际网址 利来国际老牌w66 w66 利来娱乐网 利来娱乐备用
利来娱乐国际最给利老牌网站 利来电游 利来国际旗舰厅怎么 利来娱乐国际最给利老牌网站 利来电游官方网站
利来国际老牌博彩 利来娱乐国际 利来AG旗舰厅 利来国际w66 利来国际w66平台
利来国际备用 w66利来国际 利来国际娱乐老牌 利来国际娱乐官方 利来国际AGq旗舰厅
赤壁市| 湘潭市| 巴林右旗| 太和县| 徐汇区| 张家港市| 珲春市| 望都县| 海南省| 额济纳旗| 宁乡县| 三明市| 五河县| 石首市| 安龙县| 马山县| 宁德市| 铜山县| 鄂托克前旗| 禄丰县| 团风县| 嵩明县| 潜江市| 安远县| 安乡县| 家居| 武冈市| 蓬溪县| 若羌县| 长岭县| 合川市| 横山县| 洛川县| 宜宾县| 多伦县| 星座| 确山县| 淳安县| 九龙县| 仲巴县| 博乐市| http:// http:// http:// http:// http:// http://